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ABSTRACT: We examine the question of figures-of-merit for optimiz- 
ing the lineshapes of neutron scattering sources, instruments and experi- 
ments. Using maximum entropy deconvolution of simulated data, we 
test the effects of various features of lineshapes including intensity, reso- 
lution (FWHM), shape, and background. We demonstrate that conven- 
tional figures-of-merit are of limited validity, and we suggest that 
bandwidth is an important criterion for optimization. 

Introduction 

An outstanding problem in the development of neutron scattering sources, 
instruments and experiments is how to establish figures-of-merit (FOM) for 
optimizing designs. This is central to the wise allocation of the billions of 
dollars which have been, or are proposed to be, invested in neutron scatter- 
ing facilities for condensed matter research [l]. Applications [2] would in- 
clude comparing the relative performances of pulsed spallation and reactor 
neutron sources, choosing the poisoning of moderators at pulsed sources, 
making decisions to trade intensity for resolution or noise for signal in the 
conduct of an experiment, etc. Prior approaches to optimization have been 
primarily intuitive “seat-of-the-pants” judgments based on empirical experi- 
ence in neutron scattering research. Although the goal should be to maxi- 
mize the information gained in neutron scattering experiments, until now 
there has been little effort to address the problem from an information theory 
viewpoint. Optimization should consider the statistical problem of data analy- 
sis. In the present paper, we begin to remedy this oversight by providing 
some simulations of the ability to recover information from differing instru- 
ment response functions (or lineshapes). We wish to motivate the application 
of information theory to neutron scattering science and facility design. 

Let us consider a one-dimensional neutron scattering experiment in which 
the data, D(x), are a convolution of an instrument response function (or 
resolution function), R(x), with the neutron scattering law, S(x). Then 

m 

D(x) = I R(x -x’) S(d) dx’ + B(x) + Z(x) , (1) 
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where B(x) is the background, and C(x) is the noise. The goal of any neu- 
tron scattering experiment is to infer the neutron scattering law, S(X), from 
the data, D(X). 

In a representative neutron scattering experiment, the neutron scattering law, 
S(x), we wish to measure may be as shown in Fig. 1 (a). As a first approxi- 
mation R(x) is usually assumed to be Gaussian, as the Central Limit Theorem 
suggests. Traditionally, an experimenter would select the Full Width Half 
Maximum (FWHM) of R(x) to be of the same magnitude as the width of the 
structure expected in S(X). The corresponding typical data set, D(X), is 
shown in Fig. 1 (b), where there is broadening due to the instrument (of 
FWHM = 2.5 pixels as shown by the bar), noise governed by Poisson statis- 
tics, and background (chosen to be flat and equal to 5% of the peak signal). 
That is, experiments are typically optimized so that the raw data, D(X), re- 
sembles a slightly broadened and noisy version of the S(x) neutron scatterers 
expect to measure. This “what-you-see-is-what-you-get” philosophy of op- 
timization is based on the widely-held perception that, if the FWHM of R(x) 
is very broad, much sharper structure in S(x) is not recoverable. 

The Object Data 

FIG. 1 (a) - A representative neu- 
tron scattering law, S(x), as a 
function of pixel (or channel) num- 
ber, x. 

FIG. 1 (b) - Typical neutron scatter- 
ing data, D(X), corresponding to 
the neutron scattering law in Fig. 
1 (a). The data are broadened by a 
Gaussian with FWHM of 2.5 pixels 
as shown, and with noise and 5% 
background added. 

While neutron scattering is in general a Poisson process, in the limit of large 
numbers we can make an independent Gaussian approximation for C(x) in 
which 

<C(x)> = 0 , (2) 
and 

<Z(x) X(X’) > = 6(x-x’) R(x-x’) S(d) dx’+B(x) . 1 (3) 
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Here < > denotes an average over all such experiments. A common data 
analysis procedure would be to estimate the parameters of a model for S(x) 
by minimizing 

2 

D(Xi) - C AX R(Xi -Xi> S(Xj) - B(Xi) 

j 

D(Xi) 

> , 
(4) 

where we have broken the integral up into pixels of width AX, and N is the 

number of pixels in the range of the experiment. The errors on the parame- 

ters would be determined from the variation of X2. 

Another popular perception is that the FOM for the design of spectrometers 
should be 

F.O.M. = 
Total Intensity 

FWHi@ * 
(9 

Instruments with the same FOM are supposed to have comparable perform- 
ance for neutron scattering experiments. This FOM is rigorously correct for 
the problem of determining the position of a S-function broadened by a 

Gaussian R(x) by minimizing 2. It has been proposed as a more general 
FOM for the problem of optimizing spectrometers for pulsed neutron sources 

[31. 

We contend that both these popular perceptions are demonstrably false. A 
counterexample is provided by the Be Filter Difference Spectrometer at 
LANSCE, where features in S(x) orders of magnitude sharper than the 
FWHM have been recovered, using both direct inversion [4] and maximum 
entropy deconvolution [S], by taking advantage of the sharp leading edge of 
R(x). The present paper generalizes this example to the overall problem of 
the optimization of neutron scattering experiments. 

Approach 

We formulate the problem of inferring S(x) from D(x) in terms of Bayes’ 
theorem [6], upon which all data analysis procedures are at least implicitly 
based. This states that the conditional probability of S(x) given D(x) is 

P[S(x)lD(x)l a ~[D(x)lS(x)l X f’[S(x)l + (6) 

Here, P[D(x)lS(x)] is the probability of the measured data for a given scat- 
tering law, which is referred to as the Likelihood function. In our limit of 
independent Gaussian statistics, this reduces to the familiar form 
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WWWI * ew ( -7 xz, . (7) 

P[S(x)] represents our state of knowledge about S(x) (or the lack of it) be- 
fore we have any data, and it is referred to as the Prior. Eq. (6) states that 
the product of the Likelihood and the Prior is proportional to the Posterior, 
or our state of knowledge after we have measured the data. The best esti- 
mate of S(x) from the data is given by the maximum of the Posterior, and the 
errors in this estimate are given by its width. The data analysis procedure of 

parameter estimation by minimizing x’ (i.e. maximum LikeZihood)is equiva- 
lent to maximizing the Posterior if the Prior is taken to be a uniform function 
of the parameters of the model. A less familiar procedure to neutron scat- 
terers is deconvolution, in which an alternative form for the Prior is chosen. 
For example, in the maximum entropy method [7] the Prior is taken to be 
the exponential of the entropy of S(x) relative to a starting default model. 

The present paper describes simulations of the effect of differing instrument 
responses (R(x), B, Z(X)), on the ability to infer the scattering law, S(x), 
from the data, D(x). Altering the instrument response only alters the Likeli- 
hood function and not the Prior, so that our general conclusions will be inde- 
pendent of whether we attempt parameter estimation or deconvolution to 
infer S(x). Similarly, since different deconvolution procedures only alter the 
Prior, our conclusions are also qualitatively independent of the choice of 
deconvolution method. 

To be specific, we take the test S(x) (termed the object) shown in Fig. 1 (a), 
and we create simulated data resulting from various instrument responses. 
Although such simulations could be attempted for any physical experiment, 
in this paper the choice of instrument responses will be limited to what we 
consider to be typical of neutron scattering spectrometers and sources. Un- 
less otherwise stated, we set the background level at 5% of the peak signal. 
We perform a maximum entropy (MaxEnt) deconvolution of the data to re- 
cover an inferred S(x) (termed the image). Maximum entropy has been 
shown to be the preferred method for the deconvolution of positive additive 
distribution functions [7]. The MaxJZnt deconvolution procedure will use a 

flat default model with a stopping criteria of x”=l. We shall compare the 
image to the object, and we will exercise our subjective judgement about 
which images are more faithful to the object. 

Our purpose is to be provocative rather than definitive. Therefore, we at- 
tempt to keep the argument simple by presuming that the instrument re- 
sponse parameters, R(x) and B(x), are accurately known, although this is 
often not true in practice. Data analysis procedures exist for the cases where 
these are imperfectly known including: calibration experiments on a known 
sample, S(x), which can be used to infer R(x); blind deconvolution which can 
be used to infer both R(x) and S(x); and, two-channel deconvolution which 
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can be used to infer B(x). In principle a straightforward extension of our 
approach can include such complications, but we do not attempt that here. 

Simulations 

First, it is important to establish some experience with deconvolution. We 
begin with the ubiquitous Gaussian instrument response function, R(x). Fig- 
ure 2(a) shows typical simulated data when the object of Fig. 1 (a) is convo- 
luted with a broad Gaussian R(x) of FWHM of 25 pixels, which is ten times 
the broadening of Fig. l(b) and much broader than the structure in S(x). 
Figure 2(b) shows the MaxEnt images corresponding to the data in Fig. 2(a) 
(dashed line), with 100 times the counts (solid line), and 10,000 times the 
counts (dotted line). Figure 2 demonstrates that deconvolution can resolve 
peaks which are not evident in the raw data, and that increasing statistical 
accuracy can improve the resolution of the image. 

X X 

FIG. 2(a) - Gaussian broadened FIG. 2(b) - Images of S(x) calcu- 
data with FWHM = 25 pixels, for the lated by maximum entropy 
S(x) of Fig. 1 (a). (MaxEnt) deconvolution of the data 

in Fig. 2(a) (dashed line), with 100 
times the counts (solid line), and 
with 10,000 times the counts (dot- 
ted line). 

Figure 3 shows images for the narrow Gaussian (FWHM of 2.5 pixels) broad- 
ening obtained by deconvoluting the data in Fig. 1 (b) (solid line), and for the 
same experiment with 100 times the counts (dotted line). The sharp peaks 
on the left of the object are more highly resolved in the image with better 
statistical accuracy. The intrinsically broad peak on the right is unchanged. 
Figure 3 demonstrates that, even with a sharp R(x), deconvolution can be 
useful because it can determine whether a peak is narrower than the instru- 
ment broadening. 



678 Information conlent of lineshapes 

FIG. 3 - MaxEnt images of S(x) for 0 
the narrow Gaussian broadened T g 
data in Fig. 1 (a) (solid line), and “8 
with 100 times the counts (dashed * 
line), 

J-_--h- 
50 100 

Moreover, Fig. 3 should be compared with Fig 2(b), which are the images 
created using data from the broad Gaussian R(x). According to the popular 
FOM, Eq. (S), the solid line in Fig. 2(b)) should be comparable to Fig. 3, 
and the dotted line should be much sharper. In fact, even with 10,000 times 

the peak intensity, a ten times broader Gaussian R(x) produces poorer im- 
ages than the narrow Gaussian. This provides our first counterexample to 

this FOM. 

Next we consider an R(x) constructed by convoluting the narrow Gaussian 
(of FWHM = 2.5 pixels) with a wide exponential of l/r = l/15 pixels with 
identical peak intensity to Fig. l(b). This lineshape is common to the un- 
poisoned moderators of pulsed neutron sources. This R(x) is shown (solid 
line) in Fig. 4(a). Our initial expectation may be that the quality of the image 
would be severely degraded. The simulated data shown in Fig. 4(b) (pluses) 
do not resemble the object. Nevertheless, the quality of the image shown in 
Fig. 4(c) obtained by deconvolution (solid line) is almost equal to that ob- 

tained with the narrow Gaussian, shown as the solid line in Fig. 3 (note the 
change in vertical scale). We conclude that the correct FOM may not be 

very sensitive to the FWHM of R(x), which also contradicts Eq. (5). 

Figure 4 also shows a simulation analogous to the poisoning of moderators for 
pulsed neutron sources. Figure 4(a) shows a poisoned R(x) (dashed line) 
constructed by convoluting a narrower exponential of l/r= l/2 pixels with the 
same narrow Gaussian. Both the poisoned and unpoisoned R(x) have the 
same peak intensities, although in practice there would be some decrease in 
peak intensity with poisoning. In the conventional neutron scatterer’s view, 
poisoning moderators has the desirable effect of making the data much more 
closely resemble the object, as shown in Fig. 4(b) (dots), and therefore im- 
proving the apparent resolution. Fig. 4(c) shows the corresponding image 
(dashed line). Both the poisoned and unpoisoned moderators in fact have 
almost identical resolving power. Poisoning moderators is questionable from 
an information content viewpoint ! Moreover, if the object being measured is 
broader than the FWHM of R(x), neutrons are lost by poisoning. 
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FIG. 4 - (a) Instrument response 
functions, R(x), for a narrow 
Gaussian convoluted with a broad 
exponential (solid) and a narrow ex- 
ponential (dashed) ; (b) corre- 
sponding data, D(x), for broad 
(pluses) and narrow (dots) R(x); 
(c) corresponding MaxEnt images 
of the neutron scattering law, S(x), 
for broad (solid) and narrow 
(dashed) R(x). 
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FIG. 5(a) - Two instrument re- 
sponse functions, R(x), with the 
same figure-of-merit according to 
Eq. (5). The solid line is a Gauss- 
ian, and the dashed line is a half- 
Gaussian with the same FWHM. 
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FIG. 5(b) - MaxEnt images of S(x) 
for the two R(x) in Fig. 5(a). Solid 
line corresponds to the Gaussian 
R(x), and the dashed line to the 
half-Gaussian R(x). 



680 lnformatbn content of lineshapes 

The insensitivity of the FOM to the FWHM is further illustrated in Fig. 5. 
Figure 5(a) shows two different R(x) with identical FWHM and total inten- 
sity, and therefore identical FOM according to Eq. (5). One is a Gaussian 
(solid line) and the other is a half Gaussian (dashed line). Figure 5 (b) shows 
the corresponding MaxEnt images. It is clear that the half Gaussian R(x) has 
much better resolving power. 

,u 
0 50 100 

FIG. 6(a) - Study of the effect of 
background level, using the R(x) in 
Fig. 4(a). The bottom data (stars) 
is with the usual 5% background. 
The top data (dots) has much 
higher background with the same 
signal. 

0 50 100 

FIG. 6(b) - MaxEnt images of S(x) 
for the two D(x) in Fig. 6(a). Solid 
line corresponds to the low back- 
ground data, and the dashed line to 
the high background data. 

Finally, Fig. 6 illustrates that background is also important to the correct 
FOM for experiment optimization. We consider the same R(x) as the solid 

line in Fig. 4(a), but with two different’levels of background. The data are 
shown in Fig. 6(a) and the corresponding MaxEnt images are shown in Fig. 
6(b). Higher background degrades the ability to recover information from 
the experiment, as expected. 

Analysis 

It should be clear from these simulations that the figure-of-merit is a much 
more complex object than suggested in Eq. (5). In particular, the sharpness 
of the structure in R(x) appears to be far more important than the FWHM. 

An argument to support this observation may be most easily developed by 
considering the direct inversion of the data by Fourier transform. We define 
the transform by 

m 

F(k) = 
I 

eikx R(x) dx . (8) 
-m 
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Then the image, $1(x), formed by direct inversion is given by 

szw = J _; g &kx [m-p] , (9) 

Such an inversion would satisfy 2’ = 0 , If we average over all such experi- 

ments in the same sense as Eq. (2) and (3), we find that the expectation 
value of the image is given by 

< Sz(x) > = S(x) (10) 

as desired. However, this inversion is poorly conditioned because of the 

noise term, r(x), in Eq. (1). Using Eq. (3), the variance of the image is 
given by 

* 
dk dp e-i(k+k’)x 

< dSz(x) GSz(x) > = - -_ I 1 2n 2n R(k)R((k’) 
&(k+k’) , (11) 

where 

DO(k) = R(k) T(k) t Z?(k) . (12) 

Since F(k) goes toward zero for k’s larger than some critical value, call it kc , 

direct inversion amplifies the noise and the variance is divergent. The image 
for any particular experiment would appear to be noisy. 

The solution of this problem is to condition the inversion by asking instead 
for a broadened image. This can be crudely done by cutting off the limits on 

the integrals in Eq. (9) and Eq. (11) at some critical value, say kc . The 

image for any particular experiment would have the noise suppressed at the 
expense of a broadened image; that is, the variance would be well behaved, 

such that 2 = lfor the image. It determines the 

2Z 

Ax k 
Z- , (13) 

C 

produce high Fourier components Sharp features in R(x) of F(k) which 

makes kc large. A broad R(x) lacks high Fourier components and so kc 

must be small. Figure 7 shows the F(k) of the resolution functions shown in 

Fig. 5(a). The full Gaussian does not have high Fourier components at large 
k while the half Gaussian has large Fourier components at high k. The corre- 
sponding MaxEnt images are shown in Fig. 5(b). The resolution of an ex- 
periment primarily depends on the Fourier spectrum of the instrument re- 
sponse function. 

The kc may be chosen 

achievable resolution by 
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FIG. 7 - Fourier transforms of the iourier Transform of Resolution Function 

-c ’ I I 
instrument response functions, 
R(x), for the Gaussian (solid line) 
and the half-Gaussian (dashed 
line) shown in Fig. 5(a). 

-50 0 50 

Conclusions K 

We have provided counterexamples to several of the popular perceptions in 
the neutron scattering community regarding the relation between the instru- 
ment response function and the resolution of an experiment. We have shown 
that the figure-of-merit of an instrument respons8 function strongly depends 
on its Fourier spectrum, in addition to other more traditional variables such 
as intensity, background, etc. Our Bayes’ theorem argument suggests that 
this qualitative conclusion will remain valid regardless of whether deconvolu- 
tion or parameter estimation is used to infer the neutron scattering law from 
the data. It will also remain true regardless of the specific choice of decon- 
volution procedure or fitting model. 

We have not proposed a specific new figure-of-merit to replace Eq. (5). 
However, we suggest that the ultimate answer may have much in common 

with the theory of communication. The characteristic Fourier variable, k, , 

which governs the resolution of an experiment, is analogous to the bandwidth 
of a signal processing circuit. In this sense, the design of neutron scattering 
experiments is related to the theory of communication [8], in which the ca- 
pacity of a channel to transmit information is proportional to the bandwidth. 
Neutron scatterers should adapt the extensive knowledge and experience in 
information theory to the design of neutron scattering experiments and 
sources. A statistical theory for spectrometer optimization will be published 
elsewhere [ 91. 
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